资源类型

期刊论文 233

会议视频 7

年份

2023 14

2022 15

2021 19

2020 17

2019 24

2018 16

2017 12

2016 7

2015 13

2014 7

2013 14

2012 8

2011 11

2010 16

2009 11

2008 5

2007 6

2006 4

2005 3

2004 4

展开 ︾

关键词

建筑科学 4

压力容器技术 2

大跨桥梁 2

安全系数 2

悬索桥 2

抑爆抗爆 2

机器学习 2

结构健康监测 2

2035年 1

3D打印 1

ARMA模型 1

ArcObjects 1

CAD 装配模型 1

CAD/CAE一体化 1

FRP 聚合物 1

GIS 1

MERS-CoV 1

Nd-YAG 1

Pd局域环境 1

展开 ︾

检索范围:

排序: 展示方式:

Recent development in low-constraint fracture toughness testing for structural integrity assessment of

Jidong KANG, James A. GIANETTO, William R. TYSON

《机械工程前沿(英文)》 2018年 第13卷 第4期   页码 546-553 doi: 10.1007/s11465-018-0501-2

摘要:

Fracture toughness measurement is an integral part of structural integrity assessment of pipelines. Traditionally, a single-edge-notched bend (SE(B)) specimen with a deep crack is recommended in many existing pipeline structural integrity assessment procedures. Such a test provides high constraint and therefore conservative fracture toughness results. However, for girth welds in service, defects are usually subjected to primarily tensile loading where the constraint is usually much lower than in the three-point bend case. Moreover, there is increasing use of strain-based design of pipelines that allows applied strains above yield. Low-constraint toughness tests represent more realistic loading conditions for girth weld defects, and the corresponding increased toughness can minimize unnecessary conservatism in assessments. In this review, we present recent developments in low-constraint fracture toughness testing, specifically using single-edge-notched tension specimens, SENT or SE(T). We focus our review on the test procedure development and automation, round-robin test results and some common concerns such as the effect of crack tip, crack size monitoring techniques, and testing at low temperatures. Examples are also given of the integration of fracture toughness data from SE(T) tests into structural integrity assessment.

关键词: fracture toughness     constraint effect     single-edge-notched tension test     pipeline     structural integrity assessment    

Emerging challenges to structural integrity technology for high-temperature applications

TU Shantung

《机械工程前沿(英文)》 2007年 第2卷 第4期   页码 375-387 doi: 10.1007/s11465-007-0066-y

摘要: Structural integrity technology has been widely used with great success for the design, manufacture and failure prevention of modern constructions such as chemical and petrochemical plants, power generation and energy conversion systems, as well as space and oceanic exploration. The modern needs of structural integrity technology are largely attributed to the increase of service temperature of the structures that results in the efficiency improvement in energy conversion and chemical processing technologies. Besides the needs arising from large-scale high-temperature plants, the high tech developments, such as micro chemo-mechanical systems and high-power electronics, provide new challenges to structural integrity technology. The present paper summarizes the recent technical progresses in large process plants and the aviation industry, micro chemo-mechanical systems, fuel cells, high-temperature electronics, and packaging and coating technologies. The state-of-the-art of structural integrity technology for high temperature applications is reviewed. Suggestions are provided for the improvement of current design and assessment methods.

关键词: manufacture     aviation industry     conversion     petrochemical     temperature    

evaluation of loading conditions during pressurized thermal shock transients based on thermal-hydraulics and structural

Jinya KATSUYAMA, Shumpei UNO, Tadashi WATANABE, Yinsheng LI

《机械工程前沿(英文)》 2018年 第13卷 第4期   页码 563-570 doi: 10.1007/s11465-018-0487-9

摘要:

The thermal hydraulic (TH) behavior of coo-lant water is a key factor in the structural integrity assessments on reactor pressure vessels (RPVs) of pressurized water reactors (PWRs) under pressurized thermal shock (PTS) events, because the TH behavior may affect the loading conditions in the assessment. From the viewpoint of TH behavior, configuration of plant equipment and their dimensions, and operator action time considerably influence various parameters, such as the temperature and flow rate of coolant water and inner pressure. In this study, to investigate the influence of the operator action time on TH behavior during a PTS event, we developed an analysis model for a typical Japanese PWR plant, including the RPV and the main components of both primary and secondary systems, and performed TH analyses by using a system analysis code called RELAP5. We applied two different operator action times based on the Japanese and the United States (US) rules: Operators may act after 10 min (Japanese rules) and 30 min (the US rules) after the occurrence of PTS events. Based on the results of TH analysis with different operator action times, we also performed structural analyses for evaluating thermal-stress distributions in the RPV during PTS events as loading conditions in the structural integrity assessment. From the analysis results, it was clarified that differences in operator action times significantly affect TH behavior and loading conditions, as the Japanese rule may lead to lower stresses than that under the US rule because an earlier operator action caused lower pressure in the RPV.

关键词: structural integrity     reactor pressure vessel     pressurized thermal shock     thermal hydraulic analysis     pressurized water reactor     weld residual stress    

An Exploration of Surface Integrity Remanufacturing for Aeroengine Components

Qiao Xiang,Yong He,Ting-hong Hou

《工程管理前沿(英文)》 2016年 第3卷 第2期   页码 107-114 doi: 10.15302/J-FEM-2016025

摘要: Surface integrity is the major factor impacting on the operation quality, service life and reliability of the aeroengine components. The surface integrity of aeroengine component is damaged by the failures such as crack, deformation, oxidation, corrosion, erosion, and microstructural degeneration. It adopts advanced remanufacturing technologies to restore or improve the surface integrity and regenerate these high value parts. This paper firstly puts forward the concept, namely surface integrity remanufacturing for aeroengine components, and its connotation. The key remanufacturing technologies have been developed to repair the components with surface damages. Ultimately, some application examples of surface integrity remanufacturing technologies as well as their effects in aeroengine maintenance are introduced. The discarded components have been reused and their service lives have been extended and their reliability has been increased by implementing surface integrity remanufacturing. It has realized “The Repaired Components Outpacing the New Ones”, material saving, energy saving, and emission reduction.

关键词: aeroengine component     surface integrity     remanufacturing     surface integrity remanufacturing    

Local fracture properties and dissimilar weld integrity in nuclear power plants

Guozhen WANG, Haitao WANG, Fuzhen XUAN, Shantung TU, Changjun LIU

《机械工程前沿(英文)》 2013年 第8卷 第3期   页码 283-290 doi: 10.1007/s11465-013-0250-1

摘要:

In this paper, the local fracture properties in a Alloy52M dissimilar metal welded joint (DMWJ) between A508 ferritic steel and 316 L stainless steel in nuclear power plants were investigated by using the single-edge notched bend (SENB) specimens, and their use in integrity assessment of DMWJ structures was analyzed. The results show that the local fracture resistance in the DMWJ is determined by local fracture mechanism, and which is mainly related to the microstructures and local strength mismatches of materials at the crack locations. The initial cracks always grow towards the materials with lower strength, and the crack path deviation is mainly controlled by the local strength mismatch. If the local fracture properties could not be used for cracks in the heat affected zones (HAZs), interface and near interface zones, the use of the fracture properties ( -resistance curves) of base metals or weld metals following present codes will unavoidably produce non-conservative (unsafe) or excessive conservative assessment results. In most cases, the assessment results will be potentially unsafe. Therefore, it is recommended to obtain and use local mechanical and fracture properties in the integrity assessment of DMWJs.

关键词: local fracture properties     dissimilar metal welded joint     integrity assessment     strength mismatch     crack growth path    

How does the improved DB mode degrade the complex integrity of infrastructure mega-projects?

Jinwen ZHANG, Yumin QIU

《工程管理前沿(英文)》 2018年 第5卷 第1期   页码 40-51 doi: 10.15302/J-FEM-2018083

摘要: Complex integrity is one of the main characteristics of infrastructure mega-projects (IMPs). Cost, technology, risk, duration, environmental impact, and other uncertain complexities are interrelated and constitute a challenging and complex management problem. At present, there is no unified understanding of or solutions to these complex integrity problems. This study analyzes the complex integrity of the island-tunnel subproject of the Hong Kong-Zhuhai-Macao Bridge (HZMB) project and proposes an improved design-build (DB) mode in which the owner provides a preliminary design and has the right to form and manage consortium. This improved DB mode creatively degrades the special complexities that arise from multiple dimensions. On this basis, it is an efficacious way to grasp the main contradictions, integrate the effective resources, and degrade the complex integrity in multiple dimensions and at multiple levels so as to effectively deal with the complexity management of IMPs.

关键词: Hong Kong-Zhuhai-Macao Bridge project     island-tunnel subproject     complex integrity     complexity degradation     the general contracting mode of design-build     the design-build consortium    

Propagation characteristics of transient waves in low-strain integrity testing on cast-in-situ concrete

Hanlong LIU, Xuanming DING

《结构与土木工程前沿(英文)》 2009年 第3卷 第2期   页码 240-240 doi: 10.1007/s11709-009-0100-8

Experimental study of surface integrity and fatigue life in the face milling of Inconel 718

Xiangyu WANG, Chuanzhen HUANG, Bin ZOU, Guoliang LIU, Hongtao ZHU, Jun WANG

《机械工程前沿(英文)》 2018年 第13卷 第2期   页码 243-250 doi: 10.1007/s11465-018-0479-9

摘要:

The Inconel 718 alloy is widely used in the aerospace and power industries. The machining-induced surface integrity and fatigue life of this material are important factors for consideration due to high reliability and safety requirements. In this work, the milling of Inconel 718 was conducted at different cutting speeds and feed rates. Surface integrity and fatigue life were measured directly. The effects of cutting speed and feed rate on surface integrity and their further influences on fatigue life were analyzed. Within the chosen parameter range, the cutting speed barely affected the surface roughness, whereas the feed rate increased the surface roughness through the ideal residual height. The surface hardness increased as the cutting speed and feed rate increased. Tensile residual stress was observed on the machined surface, which showed improvement with the increasing feed rate. The cutting speed was not an influencing factor on fatigue life, but the feed rate affected fatigue life through the surface roughness. The high surface roughness resulting from the high feed rate could result in a high stress concentration factor and lead to a low fatigue life.

关键词: roughness     hardness     residual stress     microstructure     fatigue life    

Approximation of structural damping and input excitation force

Mohammad SALAVATI

《结构与土木工程前沿(英文)》 2017年 第11卷 第2期   页码 244-254 doi: 10.1007/s11709-016-0371-9

摘要: Structural dynamic characteristics are the most significant parameters that play a decisive role in structural damage assessment. The more sensitive parameter to the damage is the damping behavior of the structure. The complexity of structural damping mechanisms has made this parameter to be one of the ongoing research topics. Despite all the difficulties in the modeling of damping, there are some approaches like as linear and nonlinear models which are described as the energy dissipation throughout viscous, material or structural hysteretic and frictional damping mechanisms. In the presence of a mathematical model of the damping mechanisms, it is possible to estimate the damping ratio from the theoretical comparison of the damped and un-damped systems. On the other hand, solving the inverse problem of the input force estimation and its distribution to each SDOFs, from the measured structural responses plays an important role in structural identification process. In this paper model-based damping approximation method and a model-less structural input estimation are considered. The effectiveness of proposed methods has been carried out through analytical and numerical simulation of the lumped mass system and the results are compared with reference data. Consequently, high convergence of the comparison results illustrates the satisfactory of proposed approximation methods.

关键词: structural modal parameters     damping identification method     input excitation force identification     Inverse problem    

Fiber-reinforced composites in milling and grinding: machining bottlenecks and advanced strategies

《机械工程前沿(英文)》 2022年 第17卷 第2期 doi: 10.1007/s11465-022-0680-8

摘要: Fiber-reinforced composites have become the preferred material in the fields of aviation and aerospace because of their high-strength performance in unit weight. The composite components are manufactured by near net-shape and only require finishing operations to achieve final dimensional and assembly tolerances. Milling and grinding arise as the preferred choices because of their precision processing. Nevertheless, given their laminated, anisotropic, and heterogeneous nature, these materials are considered difficult-to-machine. As undesirable results and challenging breakthroughs, the surface damage and integrity of these materials is a research hotspot with important engineering significance. This review summarizes an up-to-date progress of the damage formation mechanisms and suppression strategies in milling and grinding for the fiber-reinforced composites reported in the literature. First, the formation mechanisms of milling damage, including delamination, burr, and tear, are analyzed. Second, the grinding mechanisms, covering material removal mechanism, thermal mechanical behavior, surface integrity, and damage, are discussed. Third, suppression strategies are reviewed systematically from the aspects of advanced cutting tools and technologies, including ultrasonic vibration-assisted machining, cryogenic cooling, minimum quantity lubrication (MQL), and tool optimization design. Ultrasonic vibration shows the greatest advantage of restraining machining force, which can be reduced by approximately 60% compared with conventional machining. Cryogenic cooling is the most effective method to reduce temperature with a maximum reduction of approximately 60%. MQL shows its advantages in terms of reducing friction coefficient, force, temperature, and tool wear. Finally, research gaps and future exploration directions are prospected, giving researchers opportunity to deepen specific aspects and explore new area for achieving high precision surface machining of fiber-reinforced composites.

关键词: milling     grinding     fiber-reinforced composites     damage formation mechanism     delamination     material removal mechanism     surface integrity     minimum quantity lubrication    

is essential for the integrity of stereociliary rootlet in cochlear hair cells in mice

Yuqin Men, Xiujuan Li, Hailong Tu, Aizhen Zhang, Xiaolong Fu, Zhishuo Wang, Yecheng Jin, Congzhe Hou, Tingting Zhang, Sen Zhang, Yichen Zhou, Boqin Li, Jianfeng Li, Xiaoyang Sun, Haibo Wang, Jiangang Gao

《医学前沿(英文)》 2019年 第13卷 第6期   页码 690-704 doi: 10.1007/s11684-018-0638-8

摘要: encodes the taperin protein, which is concentrated in the tapered region of hair cell stereocilia in the inner ear. In humans, mutations cause autosomal recessive nonsyndromic deafness (DFNB79) by an unknown mechanism. To determine the role of in hearing, we generated -null mice by clustered regularly interspaced short palindromic repeat/Cas9 genome-editing technology from a CBA/CaJ background. We observed significant hearing loss and progressive degeneration of stereocilia in the outer hair cells of -null mice starting from postnatal day 30. Transmission electron microscopy images of stereociliary bundles in the mutant mice showed some stereociliary rootlets with curved shafts. The central cores of the stereociliary rootlets possessed hollow structures with surrounding loose peripheral dense rings. Radixin, a protein expressed at stereocilia tapering, was abnormally dispersed along the stereocilia shafts in null mice. The expression levels of radixin and -actin significantly decreased. We propose that is critical to the retention of the integrity of the stereociliary rootlet. Loss of in -null mice caused the disruption of the stereociliary rootlet, which resulted in damage to stereociliary bundles and hearing impairments. The generated -null mice are ideal models of human hereditary deafness DFNB79.

关键词: TPRN     stereocilia     stereociliary rootlet     actin filament     CRISPR/Cas9     hearing    

Effects of green roof damping and configuration on structural seismic response

《结构与土木工程前沿(英文)》   页码 1133-1144 doi: 10.1007/s11709-023-0959-9

摘要: Sustainable structures are critical for addressing global climate change. Hence, their structural resilience or ability to recover from natural events must be considered comprehensively. Green roofs are a widely used sustainable feature that improve the environment while providing excellent occupant amenity. To expand their usage, their inherent damping and layout sensitivity to seismic performance are investigated in this study. The soil of a green roof can serve as a damper to dissipate the energy generated by earthquakes or other dynamic events. Results of preliminary analysis show that a green roof soil can increase localized damping by 2.5% under both dry and saturated conditions. Based on these findings, nonlinear time-history analyses are conducted on a three-story building in SAP2000 to monitor the structural behavior with and without a green roof. The increased damping in the green roof soil is beneficial to the structural performance, i.e., it reduces the building displacement and acceleration by 10% and 12%, respectively. Additionally, certain configurations are more effective and beneficial to the structural response than others, which suggests the possibility of design optimization. Based on the findings of this study, new methods of modeling and considering green roofs in structural design are established.

关键词: green infrastructure     green roof     structural resilience     seismic design    

Development of an integrated structural health monitoring system for bridge structures in operational

Xinqun ZHU, Hong HAO

《结构与土木工程前沿(英文)》 2012年 第6卷 第3期   页码 321-333 doi: 10.1007/s11709-012-0161-y

摘要: This paper presents an overview of development of an integrated structural health monitoring system. The integrated system includes vibration and guided-wave based structural health monitoring. It integrates the real-time heterogeneous sensor data acquiring system, data analysis and interpretation, physical-based numerical simulation of complex structural system under operational conditions and structural evaluation. The study is mainly focused on developing: integrated sensor technology, integrated structural damage identification with operational loads monitoring, and integrated structural evaluation with results from system identification. Numerical simulation and its implementation in laboratory show that the system is effective and reliable to detect local damage and global conditions of bridge structures.

关键词: integrated structural health monitoring     operational conditions     vibration and guided wave    

Digital image correlation-based structural state detection through deep learning

《结构与土木工程前沿(英文)》 2022年 第16卷 第1期   页码 45-56 doi: 10.1007/s11709-021-0777-x

摘要: This paper presents a new approach for automatical classification of structural state through deep learning. In this work, a Convolutional Neural Network (CNN) was designed to fuse both the feature extraction and classification blocks into an intelligent and compact learning system and detect the structural state of a steel frame; the input was a series of vibration signals, and the output was a structural state. The digital image correlation (DIC) technology was utilized to collect vibration information of an actual steel frame, and subsequently, the raw signals, without further pre-processing, were directly utilized as the CNN samples. The results show that CNN can achieve 99% classification accuracy for the research model. Besides, compared with the backpropagation neural network (BPNN), the CNN had an accuracy similar to that of the BPNN, but it only consumes 19% of the training time. The outputs of the convolution and pooling layers were visually displayed and discussed as well. It is demonstrated that: 1) the CNN can extract the structural state information from the vibration signals and classify them; 2) the detection and computational performance of the CNN for the incomplete data are better than that of the BPNN; 3) the CNN has better anti-noise ability.

关键词: structural state detection     deep learning     digital image correlation     vibration signal     steel frame    

Identification of structural parameters and boundary conditions using a minimum number of measurement

Ali KARIMPOUR, Salam RAHMATALLA

《结构与土木工程前沿(英文)》 2020年 第14卷 第6期   页码 1331-1348 doi: 10.1007/s11709-020-0686-4

摘要: This article proposes a novel methodology that uses mathematical and numerical models of a structure to build a data set and determine crucial nodes that possess the highest sensitivity. Regression surfaces between the structural parameters and structural output features, represented by the natural frequencies of the structure and local transmissibility, are built using the numerical data set. A description of a possible experimental application is provided, where sensors are mounted at crucial nodes, and the natural frequencies and local transmissibility at each natural frequency are determined from the power spectral density and the power spectral density ratios of the sensor responses, respectively. An inverse iterative process is then applied to identify the structural parameters by matching the experimental features with the available parameters in the myriad numerical data set. Three examples are presented to demonstrate the feasibility and efficacy of the proposed methodology. The results reveal that the method was able to accurately identify the boundary coefficients and physical parameters of the Euler-Bernoulli beam as well as a highway bridge model with elastic foundations using only two measurement points. It is expected that the proposed method will have practical applications in the identification and analysis of restored structural systems with unknown parameters and boundary coefficients.

关键词: structural model validation     eigenvalue problem     response surface     inverse problems    

标题 作者 时间 类型 操作

Recent development in low-constraint fracture toughness testing for structural integrity assessment of

Jidong KANG, James A. GIANETTO, William R. TYSON

期刊论文

Emerging challenges to structural integrity technology for high-temperature applications

TU Shantung

期刊论文

evaluation of loading conditions during pressurized thermal shock transients based on thermal-hydraulics and structural

Jinya KATSUYAMA, Shumpei UNO, Tadashi WATANABE, Yinsheng LI

期刊论文

An Exploration of Surface Integrity Remanufacturing for Aeroengine Components

Qiao Xiang,Yong He,Ting-hong Hou

期刊论文

Local fracture properties and dissimilar weld integrity in nuclear power plants

Guozhen WANG, Haitao WANG, Fuzhen XUAN, Shantung TU, Changjun LIU

期刊论文

How does the improved DB mode degrade the complex integrity of infrastructure mega-projects?

Jinwen ZHANG, Yumin QIU

期刊论文

Propagation characteristics of transient waves in low-strain integrity testing on cast-in-situ concrete

Hanlong LIU, Xuanming DING

期刊论文

Experimental study of surface integrity and fatigue life in the face milling of Inconel 718

Xiangyu WANG, Chuanzhen HUANG, Bin ZOU, Guoliang LIU, Hongtao ZHU, Jun WANG

期刊论文

Approximation of structural damping and input excitation force

Mohammad SALAVATI

期刊论文

Fiber-reinforced composites in milling and grinding: machining bottlenecks and advanced strategies

期刊论文

is essential for the integrity of stereociliary rootlet in cochlear hair cells in mice

Yuqin Men, Xiujuan Li, Hailong Tu, Aizhen Zhang, Xiaolong Fu, Zhishuo Wang, Yecheng Jin, Congzhe Hou, Tingting Zhang, Sen Zhang, Yichen Zhou, Boqin Li, Jianfeng Li, Xiaoyang Sun, Haibo Wang, Jiangang Gao

期刊论文

Effects of green roof damping and configuration on structural seismic response

期刊论文

Development of an integrated structural health monitoring system for bridge structures in operational

Xinqun ZHU, Hong HAO

期刊论文

Digital image correlation-based structural state detection through deep learning

期刊论文

Identification of structural parameters and boundary conditions using a minimum number of measurement

Ali KARIMPOUR, Salam RAHMATALLA

期刊论文